Abstract

We consider statistical mixtures of two and three arbitrary coherent states that are the states of a data carrier in an optical communication channel. The eigenvalues and eigenvectors of the corresponding density operators are obtained in analytic form. For this purpose, an original parameterization of triangles on the complex phase plane is introduced. Analytic expressions are obtained for the von Neumann entropy of mixtures of two and three arbitrary coherent states, and its maximal value for a given average number of photons is calculated. It is found that the use of three coherent states for a given average number of photons ensures a larger capacity of an optical communication channel as compared to two states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.