Abstract
Small-angle neutron scattering (SANS) was used to examine the melt phase behavior of a heavily branched comb PEE polymer blended separately with two linear PEE copolymers. In this case, PEE refers to poly(ethylene-r-ethylethylene) with 10% ethylene units; therefore, the molecular architecture was the only difference between the two components of the blends. The molecular weights of the two linear random copolymers were 60 and 220 kg/mol, respectively. The comb polymer contained an average of 54 long branches, with a molecular weight of 13.7 kg/mol, attached to a backbone with a molecular weight of 10 kg/mol. Three different volume compositions (25/75, 50/50, and 75/25) were investigated for both types of blends. SANS results indicate that all the blends containing the lower molecular weight linear polymer formed single-phase mixtures, whereas all the blends containing the high molecular weight linear polymer phase-separated. These results are discussed in the context of current theories for polymer blend miscibility. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2965–2975, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.