Abstract

Our knowledge of quantum mechanics can satisfactorily describe simple, microscopic systems, but is yet to explain the macroscopic everyday phenomena we observe. Here we aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations. We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities, even if their associated observables do not commute. We also establish how the precision of measurements must increase in order to keep quantum properties, a desirable feature for large quantum computers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call