Abstract
The uncertainty principle restricts our ability to simultaneously predict the measurement outcomes of two incompatible observables of a quantum particle. However, this uncertainty could be reduced and quantified by a new Entropic Uncertainty Relation (EUR). By the open quantum system approach, we explore how the nature of de Sitter space affects the EUR. When the quantum memory A freely falls in the de Sitter space, we demonstrate that the entropic uncertainty acquires an increase resulting from a thermal bath with the Gibbons–Hawking temperature. And for the static case, we find that the temperature coming from both the intrinsic thermal nature of the de Sitter space and the Unruh effect associated with the proper acceleration of A also brings effect on entropic uncertainty, and the higher the temperature, the greater the uncertainty and the quicker the uncertainty reaches the maximal value. And finally the possible mechanism behind this phenomenon is also explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.