Abstract

Non-Gaussian displacement distributions are universal predictors of dynamic heterogeneity in slowly varying environments. Here, we explore heterogeneous dynamics in supercooled liquid using molecular dynamics simulations and show the efficiency of the relative-entropy based measure, negentropy, in quantifying dynamic heterogeneity over the widely used non-Gaussian parameter. Our analysis shows that the heterogeneity quantified by the negentropy is significantly different from the one obtained using the conventional moment-based definition that considers deviation from Gaussianity up to lower-order moments. We extract the timescales of dynamic heterogeneity using the two methods and show that the differential changes diverge as the system experiences strong intermittency near the glass transition. Further, we interpret the entropic timescales and discuss the general implications of our work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.