Abstract

We demonstrate the existence of entropic stochastic resonance (ESR) of passive Brownian particles with finite size in a double- or triple-circular confined cavity, and compare the similarities and differences of ESR in the double-circular cavity and triple-circular cavity. When the diffusion of Brownian particles is constrained to the double- or triple-circular cavity, the presence of irregular boundaries leads to entropic barriers. The interplay between the entropic barriers, a periodic input signal, the gravity of particles, and intrinsic thermal noise may give rise to a peak in the spectral amplification factor and therefore to the appearance of the ESR phenomenon. It is shown that ESR can occur in both a double-circular cavity and a triple-circular cavity, and by adjusting some parameters of the system, the response of the system can be optimized. The differences are that the spectral amplification factor in a triple-circular cavity is significantly larger than that in a double-circular cavity, and compared with the ESR in a double-circular cavity, the ESR effect in a triple-circular cavity occurs within a wider range of external force parameters. In addition, the strength of ESR also depends on the particle radius, and smaller particles can induce more obvious ESR, indicating that the size effect cannot be safely neglected. The ESR phenomenon usually occurs in small-scale systems where confinement and noise play an important role. Therefore, the mechanism that is found could be used to manipulate and control nanodevices and biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.