Abstract
While preexisting defects are known to act as nucleation sites for plastic deformation in shocked materials, the kinetics of the early stages of plastic yield are still poorly understood. We use atomistic simulation techniques to investigate the kinetics of plastic yield around small preexisting voids in copper single crystals under uniaxial tensile strain. We demonstrate that at finite temperatures, these voids are stabilized by strong entropic effects that confer them significant lifetimes even when the static mechanical instability limit is exceeded. By virtue of its entropic nature, this effect is shown to be proportionally stronger at higher temperatures. Even accounting for thermal activation, very small voids prove to be extremely inefficient nucleation sites for plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.