Abstract

Early stages of engineering design processes are characterized by high levels of uncertainty due to incomplete knowledge. As the design progresses, additional information is externally added or internally generated within the design process. As a result, the design solution becomes increasingly well-defined and the uncertainty of the problem reduces, diminishing to zero at the end of the process when the design is fully defined. In this research a measure of uncertainty is proposed for a class of engineering design problems called discrete design problems. Previously, three components of complexity in engineering design, namely, size, coupling and solvability, were identified. In this research uncertainty is measured in terms of the number of design variables (size) and the dependency between the variables (coupling). The solvability of each variable is assumed to be uniform for the sake of simplicity. The dependency between two variables is measured as the effect of a decision made on one variable on the solution options available to the other variable. A measure of uncertainty is developed based on this premise, and applied to an example problem to monitor uncertainty reduction through the design process. Results are used to identify and compare three task-sequencing strategies in engineering design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.