Abstract

By employing molecular dynamics simulations, we explored the effective depletion zone for nanoparticles (NP) immersed in semiflexible polymer melts and calculated the entropic depletion interactions between a pair of NPs in semiflexible polymer nanocomposite melts. The average depletion zone volumes rely mainly on polymer chain stiffness and increase with chain stiffness increasing. In the semiflexible polymer nanocomposite melts, the entropic depletion interactions are attractive and anisotropic, and increase with chain stiffness increasing. Meanwhile, the attractive interactions between NPs and polymers can also affect strongly the entropic depletion interactions. For the semiflexible polymer nanocomposite melts in the athermal system, the entropic depletion interactions change from anisotropic to isotropic when the NP/polymer interactions increase. For NPs in the rodlike polymer melts, a mixture structure of contact/"bridging" aggregations for NPs is formed at a strong attractive NP/polymer interaction. Our calculations can provide an effective framework to predict the morphology of NPs immersed in semiflexible polymer melts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.