Abstract

We investigate the statistical mechanics of a torsionally constrained polymer. The polymer is modeled as a fluctuating rod with bend stiffness A kT and twist stiffness C kT. In such a model, thermal bend fluctuations couple geometrically to an applied torque through the relation Lk = Tw + Wr. We explore this coupling and find agreement between the predictions of our model and recent experimental results on single lambda-DNA molecules. This analysis affords an experimental determination of the microscopic twist stiffness (averaged over a helix repeat). Quantitative agreement between theory and experiment is obtained using C=109 nm. The theory further predicts a thermal reduction of the effective twist rigidity induced by bend fluctuations. Finally, we find a small reflection of molecular chirality in the experimental data and interpret it in terms of a twist-stretch coupling of the DNA duplex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call