Abstract

We report molecular modeling of stretching single molecules of tropocollagen, the building block of collagen fibrils and fibers that provide mechanical support in connective tissues. For small deformation, we observe a dominance of entropic elasticity. At larger deformation, we find a transition to energetic elasticity, which is characterized by first stretching and breaking of hydrogen bonds, followed by deformation of covalent bonds in the protein backbone, eventually leading to molecular fracture. Our force-displacement curves at small forces show excellent quantitative agreement with optical tweezer experiments. Our model predicts a persistence length ξ p ≈ 16 nm, confirming experimental results suggesting that tropocollagen molecules are very flexible elastic entities. We demonstrate that assembly of single tropocollagen molecules into fibrils significantly decreases their bending flexibility, leading to decreased contributions of entropic effects during deformation. The molecular simulation results are used to develop a simple continuum model capable of describing an entire deformation range of tropocollagen molecules. Our molecular model is capable of describing different regimes of elastic and permanent deformation, without relying on empirical parameters, including a transition from entropic to energetic elasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.