Abstract

The formation of an appropriate solid electrolyte interphase (SEI) at the anode of a sodium battery is crucially dependent on the electrochemical stability of solvent and electrolyte at the redox potential of Na/Na+ in the respective system. In order to determine entropic contributions to the relative stability of the electrolyte solution, we measure the reaction entropy of Na metal deposition for diglyme (DG) and propylene carbonate (PC) based electrolyte solutions by electrochemical microcalorimetry at single electrodes. We found a large positive reaction entropy for Na+ deposition in DG of ΔR 234 J mol-1 K-1 (c.f.: ΔR 83 J mol-1 K-1 ), which signals substantial entropic destabilization of Na+ in DG by about 0.73 eV, thus increasing the stability of solvent and electrolyte relative to Na+ reduction. We attribute this strong entropic destabilization to a highly negative solvation entropy of Na+ , due to the low dielectric constant and high freezing entropy of DG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call