Abstract

In contrast to their seemingly simple and shared structure of independence and stationarity, L\'evy processes exhibit a wide variety of behaviors, from the self-similar Wiener process to piecewise-constant compound Poisson processes. Inspired by the recent paper of Ghourchian, Amini, and Gohari (2018), we characterize their compressibility by studying the entropy of their double discretization (both in time and amplitude) in the regime of vanishing discretization steps. For a L\'evy process with absolutely continuous marginals, this reduces to understanding the asymptotics of the differential entropy of its marginals at small times, for which we obtain a new local central limit theorem. We generalize known results for stable processes to the non-stable case, with a special focus on L\'evy processes that are locally self-similar, and conceptualize a new compressibility hierarchy of L\'evy processes, captured by their Blumenthal-Getoor index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.