Abstract

Metastasized and chemoresistant secondary breast cancer treatment commonly shows very low efficacy. A new efficient treatment method is required to overcome the limitation against the secondary breast cancer. In this study, anoikis-resistant breast cancer cells, MDA-MB-231 and MCF-7 were developed as models of chemoresistant and metastatic breast cancer. Doxorubicin encapsulating human serum albumin nanoparticles (HSA+DOX NPs) were fabricated to confirm the benefits of nanoparticles at the treatment of anoikis-resistant breast cancer cells. The side population (SP) fraction in the anoikis-resistant cancer cells was higher than the parental cells. HSA+DOX NPs were more cytotoxic to anoikis-resistant cancer cells than free doxorubicin. The confocal microscope images demonstrated HSA+DOX NPs to deliver more doxorubicin into cells compared to the free doxorubicin by bypassing the drug efflux pump systems of anoikis-resistant cancer cells. In this study, a nanomedicine-based drug delivery carrier shows a potential in treating a metastasized and chemoresistant breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.