Abstract

The kinetics of oxidative phenol degradation with microbial cellsCandida tropicalis, immobilized in a polyacrylamide and polymethacrylamide matrix, were mathematically simulated assuming zero-order and Michaelis-Menten rate equations.For zero-order kinetics an expanded equation for catalytic effectiveness as a function of the Thiele modulus, Biot number, and partition coefficients was derived and compared with numerical solutions for Michaelis-Menten kinetics. Errors with regard to the zero-order approximation become negligible ifc o/K M >2.Experimentally determined catalyst activities as a function of particle size and cell concentration were compared to calculated ones. Additional experiments to determine the diffusion and oxygen consumption ratios have been carried out in an effort to resolve the physical parameters to be used in the above mentioned calculations.Furthermore, experiments on cell growth during reincubation with nutrients and oxygen are reported; an increase in activity up to a factor of ten was observed. These experiments demonstrate that the microbial cells are entrapped in the polymer matrix in the living state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call