Abstract
Animal cell technology is attracting considerable interest because of the capacity of animal cell cultures to synthesize or transform complex compounds such as virus vaccines, immunochemicals, hormones or enzymes. For the growth of surface-dependent cells, microcarrier technology is gaining importance. Here, we have attempted to immobilize surface-independent cells, normally grown in suspension, by entrapping them in polymer microbeads. Such entrapment should give increased stability to the normally fragile animal cells, allow for high cell densities to be achieved within the beads and make such preparations suitable for continuous operation. At the same time, the need for separation of the desired product from the cells is obviated. With the model systems studied, we showed that hybridoma, as well as other cell lines entrapped in agarose microbeads, remained viable. Both immunoglobulins and lymphokines were exported through the microbeads into the medium for 1-3 weeks, at levels corresponding well to those produced with free cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.