Abstract

Entransy, a recently developed concept, is the central physical quantity characterizing heat transfer processes not related to heat-to-work conversions. The entransy of an object pertains to the nature of the potential energy of heat in a thermal field and describes its heat transfer ability. In the present study, we revisit this concept, and develop its relationship to state and process quantities. This then enables a direct comparison to the more familiar concept, entropy, the central physical quantity in thermodynamics. The comparison helps to identify the role entransy has in heat transfer processes and highlight under what conditions state and process quantities related to entransy can be distinguished in such processes. As to embody the entransy loss due to work expended between the system and its environment for the irreversible heat conduction in gases, new quantities, available entransy flow and available system entransy are introduced. Both the entransy of solids and the available system entransy of gases are state quantities and their changes correspond to the entransy flow and the available entransy flow respectively. Thus there is no need to stress the difference between process quantity and state quantity in heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.