Abstract

Circadian rhythms occur in nearly all living organisms with a period close to 24 h. These rhythms constitute an important class of biological oscillators which present the characteristic of being naturally subjected to forcing by light-dark (LD) cycles. In order to investigate the conditions in which such a forcing might lead to chaos, we consider a model for a circadian limit cycle oscillator and assess its dynamic behavior when a light-sensitive parameter is periodically forced by LD cycles. We determine as a function of the forcing period and of the amplitude of the light-induced changes in the light-sensitive parameter the occurrence of various modes of dynamic behavior such as quasi-periodicity, entrainment, period-doubling and chaos. The type of oscillatory behavior markedly depends on the forcing waveform; thus the domain of entrainment grows at the expense of the domain of chaos as the forcing function progressively goes from a square wave to a sine wave. Also studied is the dependence of the phase of periodic or aperiodic oscillations on the amplitude of the light-induced changes in the control parameter. The results are discussed with respect to the main physiological role of circadian rhythms which is to allow organisms to adapt to their periodically varying environment by entrainment to the natural LD cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call