Abstract
Circadian oscillators found across a variety of species are subject to periodic external light-dark forcing. Entrainment to light-dark cycles enables the circadian system to align biological functions with appropriate times of day or night. Phase response curves (PRCs) have been used for decades to gain valuable insights into entrainment; however, PRCs may not accurately describe entrainment to photoperiods with substantial amounts of both light and dark due to their reliance on a single limit cycle attractor. We have developed a new tool, called an entrainment map, that overcomes this limitation of PRCs and can assess whether, and at what phase, a circadian oscillator entrains to external forcing with any photoperiod. This is a 1-dimensional map that we construct for 3 different mathematical models of circadian clocks. Using the map, we are able to determine conditions for existence and stability of phase-locked solutions. In addition, we consider the dependence on various parameters such as the photoperiod and intensity of the external light as well as the mismatch in intrinsic oscillator frequency with the light-dark cycle. We show that the entrainment map yields more accurate predictions for phase locking than methods based on the PRC. The map is also ideally suited to calculate the amount of time required to achieve entrainment as a function of initial conditions and the bifurcations of stable and unstable periodic solutions that lead to loss of entrainment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.