Abstract

Local mixing and reaction processes were studied within a laboratory-scale, entrained coal gasifier at atmospheric pressure, using a Utah high-volatile, low-sulphur bituminous coal at a design flow rate of 24.5 kg h −1. The coal-oxygen-steam feed mass ratio was 1.00:0.91:0.27. A water-quenched sample probe was used to collect radial gas and char samples at seven different axial positions in the 124 cm long reactor for the measurement of gasification products and residual char composition. The observed carbon conversion was 79 ± 3%. Coal hydrogen and oxygen were converted more rapidly and more completely than carbon. Devolatilization, which occurred very rapidly near the inlet, led to most of this carbon conversion; heterogeneous char reactions with CO 2 and steam apparently accounted for the balance. Oxygen was consumed through reaction with volatiles very quickly in the upper gasifier region. These data were used to evaluate mixing and reaction characteristics within the reactor. Agreement of measurements with predictions from a generalized two-dimensional entrained coal gasification model was good.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.