Abstract
Cell fate is commonly studied by profiling the gene expression of single cells to infer developmental trajectories based on expression similarity, RNA velocity, or statistical mechanical properties. However, current approaches do not recover microenvironmental signals from the cellular niche that drive a differentiation trajectory. We resolve this with environment-aware trajectory inference (ENTRAIN), a computational method that integrates trajectory inference methods with ligand-receptor pair gene regulatory networks to identify extracellular signals and evaluate their relative contribution towards a differentiation trajectory. The output from ENTRAIN can be superimposed on spatial data to co-localize cells and molecules in space and time to map cell fate potentials to cell-cell interactions. We validate and benchmark our approach on single-cell bone marrow and spatially resolved embryonic neurogenesis datasets to identify known and novel environmental drivers of cellular differentiation. ENTRAIN is available as a public package at https://github.com/theimagelab/entrain and can be used on both single-cell and spatially resolved datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.