Abstract
The basic nature of pitch is much debated. A robust code for pitch exists in the auditory nerve in the form of an across-fiber pooled interspike interval (ISI) distribution, which resembles the stimulus autocorrelation. An unsolved question is how this representation can be "read out" by the brain. A new view is proposed in which a known brain-stem property plays a key role in the coding of periodicity, which I refer to as "entracking", a contraction of "entrained phase-locking". It is proposed that a scalar rather than vector code of periodicity exists by virtue of coincidence detectors that code the dominant ISI directly into spike rate through entracking. Perfect entracking means that a neuron fires one spike per stimulus-waveform repetition period, so that firing rate equals the repetition frequency. Key properties are invariance with SPL and generalization across stimuli. The main limitation in this code is the upper limit of firing (~ 500 Hz). It is proposed that entracking provides a periodicity tag which is superimposed on a tonotopic analysis: at low SPLs and fundamental frequencies > 500 Hz, a spectral or place mechanism codes for pitch. With increasing SPL the place code degrades but entracking improves and first occurs in neurons with low thresholds for the spectral components present. The prediction is that populations of entracking neurons, extended across characteristic frequency, form plateaus ("buttes") of firing rate tied to periodicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.