Abstract

BackgroundLow dual-task gait performance (the slowing of gait speed while performing a demanding cognitive task) is associated with low cognitive performance and an increased risk of progression to dementia in older adults with mild cognitive impairment. However, the reason for this remains unclear. This study aimed to examine the relationship between dual-task cost and regional brain volume, focusing on the hippocampus, parahippocampal gyrus, entorhinal cortex, and motor and lateral frontal cortices in older adults with mild cognitive impairment.MethodsForty older adults with mild cognitive impairment from the “Gait and Brain Study” were included in this study. Gait velocity was measured during single-task (ie, walking alone) and dual-task (ie, counting backwards, subtracting serial sevens, and naming animals, in addition to walking) conditions, using an electronic walkway. Regional brain volumes were derived by automated segmentation, using 3T magnetic resonance imaging.ResultsPartial rank correlation analyses demonstrated that a smaller volume of the left entorhinal cortex was associated with higher dual-task costs in counting backwards and subtracting serial sevens conditions. Subsequent logistic regression analyses demonstrated that a smaller volume of the left entorhinal cortex was independently associated with higher dual-task cost (slowing down >20% when performing cognitive task) in these two conditions. There were no other significant associations.ConclusionsOur results show that lower dual-task gait performance is associated with volume reduction in the entorhinal cortex. Cognitive and motor dysfunction in older adults with mild cognitive impairment may reflect a shared pathogenic mechanism, and dual-task-related gait changes might be a surrogate motor marker for Alzheimer’s disease pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call