Abstract
Entity resolution (ER) identifies database records that refer to the same real world entity. In practice, ER is not a one-time process, but is constantly improved as the data, schema and application are better understood. We address the problem of keeping the ER result up-to-date when the ER logic "evolves" frequently. A naïve approach that re-runs ER from scratch may not be tolerable for resolving large datasets. This paper investigates when and how we can instead exploit previous "materialized" ER results to save redundant work with evolved logic. We introduce algorithm properties that facilitate evolution, and we propose efficient rule evolution techniques for two clustering ER models: match-based clustering and distance-based clustering. Using real data sets, we illustrate the cost of materializations and the potential gains over the naïve approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.