Abstract
We establish the existence of an entire solution for a class of stationary Schrödinger equations with subcritical discontinuous nonlinearity and lower bounded potential that blows up at infinity. The abstract framework is related to Lebesgue–Sobolev spaces with variable exponent. The proof is based on the critical point theory in the sense of Clarke and we apply Chang’s version of the Mountain Pass Lemma without the Palais–Smale condition for locally Lipschitz functionals. Our result generalizes in a nonsmooth framework a result of Rabinowitz [P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. (ZAMP) 43 (1992) 270–291] on the existence of ground-state solutions of the nonlinear Schrödinger equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Analysis: Theory, Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.