Abstract
This paper mainly focuses on the entire solutions of a nonlocal dispersal equation with asymmetric kernel and bistable nonlinearity. Compared with symmetric case, the asymmetry of the dispersal kernel function makes more diverse types of entire solutions since it can affect the sign of the wave speeds and the symmetry of the corresponding nonincreasing and nondecreasing traveling waves. We divide the bistable case into two monostable cases by restricting the range of the variable, and obtain some merging-front entire solutions which behave as the coupling of monostable and bistable waves. Before this, we characterize the classification of the wave speeds so that the entire solutions can be constructed more clearly. Especially, we investigate the influence of the asymmetry of the kernel on the minimal and maximal wave speeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.