Abstract
We consider semilinear partial differential equations in ℝ n of the form $$ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} , $$ where k and m are given positive integers. Relevant examples are semilinear Schrodinger equations $$ - \Delta u + V(x)u = F(u), $$ , where the potential V(x) is given by an elliptic polynomial. We propose techniques, based on anisotropic generalizations of the global ellipticity condition of M. Shubin and multiparameter Picard type schemes in spaces of entire functions, which lead to new results for entire extensions and asymptotic behaviour of the solutions. Namely, we study solutions (eigenfunctions and homoclinics) in the framework of the Gel’fand-Shilov spaces S µ (ℝ n ). Critical thresholds are identified for the indices µ and ν, corresponding to analytic regularity and asymptotic decay, respectively. In the one-dimensional case −u″ + V(x)u = F(u), our results for linear equations link up with those given by the classical asymptotic theory and by the theory of ODE in the complex domain, whereas for homoclinics, new phenomena concerning analytic extensions are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.