Abstract

Tendons of the body differ dramatically in their function, mechanics and range of motion, but all connect to bone via an enthesis. Effective force transfer at the enthesis enables joint stability and mobility, with strength and stiffness arising from a fibrous architecture. However, how enthesis toughness arises across tendons with diverse loading orientations remains unclear. To study this, we performed simultaneous imaging of the bone and tendon in entheses that represent the range of tendon-to-bone insertions and extended a mathematical model to account for variations in insertion and bone geometry. We tested the hypothesis that toughness, across a range of tendon entheses, could be explained by differences observed in interactions between fibre architecture and bone architecture. In the model, toughness arose from fibre reorientation, recruitment and rupture, mediated by interactions between fibres at the enthesis and the bony ridge abutting it. When applied to tendons sometimes characterized as either energy-storing or positional, the model predicted that entheses of the former prioritize toughness over strength, while those of the latter prioritize consistent stiffness across loading directions. Results provide insight into techniques for surgical repair of tendon-to-bone attachments, and more broadly into mechanisms for the attachment of highly dissimilar materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.