Abstract

The monoclinic titanite-like high-pressure form of calcium disilicate has been synthesized and quenched to ambient conditions to form the triclinic low-pressure phase containing silicon in four-, five- and sixfold coordination. The enthalpy of formation of the quench product has been measured by high-temperature oxide melt calorimetry. The value obtained from samples from a series of several synthesis experiments is ΔH f = (−26.32 ± 4.27) kJ mol−1 for the formation from the component oxides, or ΔH f = (−2482.81 ± 4.59) kJ mol−1 for the formation from the elements. The result is identical within experimental error to available estimates, although the previously predicted energy difference between the monoclinic and triclinic phases could not be verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.