Abstract

The free scission energy is the thermodynamic parameter that governs the contour length of wormlike micelles (WLMs). It is the contour length and the propensity to coil and entangle that determine the viscoelastic properties of this commercially important substance class. The free scission energy Δ Fsc and the associated change in enthalpy Δ Hsc and entropy Δ Ssc on scission have been determined for a mixed anionic/zwitterionic surfactant system (sodium laureth sulfate and cocamidopropyl betaine) at various salt concentrations (3-5 wt % NaCl). Both enthalpy Δ Hsc and entropy Δ Ssc changes decrease linearly with increasing NaCl concentration. At NaCl concentrations above 4 wt %, Δ Ssc even adopts negative values. The term TΔ Ssc decreases more rapidly than Δ Hsc around room temperature and causes the observed elongation of WLMs upon addition of NaCl. It is suggested that Δ Ssc is initially positive due to fewer bound counterions per surfactant molecule at end caps compared to the intact, cylindrical parts before scission, leading to a net release of ions upon scission. Negative values of Δ Ssc are attributed to hydrophobic hydration occurring at the end caps at high salt concentrations. 23Na NMR measurements indicate the presence of immobilized ions, supporting a previously proposed ion-cloud model based on neutron scattering results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.