Abstract

Despite being considered a normal flora, Providencia alcalifaciens can cause diarrhea. In a previous study, strain 2939/90, obtained from a diarrheal patient, caused invasion and actin condensation in mammalian cells, and diarrhea in a rabbit model. Four TnphoA mutants of 2939/90 produced negligible invasion and actin condensation in mammalian cells. Now, the parent strain and the mutants have been sequenced to locate TnphoA insertion sites and determine the effect on virulence. A TnphoA insertion was detected in the type three secretion system (T3SS) locus on a large plasmid and not in a T3SS locus on the chromosome. In 52 genomes of P. alcalifaciens surveyed, the chromosomal T3SS locus was present in all strains, including both P. alcalifaciens genomic clades, which we classified as group A and group B. Plasmid T3SS was present in 21 of 52 genomes, mostly in group A genomes, which included isolates from an outbreak of hemorrhagic diarrhea in dogs. The TnphoA insertion only in the plasmid T3SS locus affected the invasion phenotype, suggested that this locus is critical for causation of diarrhea. We conclude that a subgroup of P. alcalifaciens that possesses this plasmid-mediated T3SS is an enteric pathogen that can cause diarrheal disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.