Abstract

Safety aspects and probiotic properties of Enterococcus faecium FL31 strain producing an enterocin, named BacFL31 were previously demonstrated. Taking into account its originality, the enterocin BacFL31 was added alone at 200 AU/g or in combination with the aqueous peel onion (Allium cepa) extract (APOE) at 1.56 ± 0.3 mg/mL to ground beef meat. Its biopreservative effect was evaluated by microbiological, physicochemical and sensory analyses during 14 days at 4°C. The APOE was characterized for its phytochemical content: total phenolic (TPC), flavonoids (TFC) and tannins contents (TAC), its antioxidant capacity using the in vitro 1,1-diphenyl-2-picrylhydrazyl (DPPH) and its antilisterial activity. APOE had a high TPC, TFC and TAC respectively with 140 ± 2.05 (mg GAE/g), 35 ± 0.5 (mg QE/g) and 20.6 ± 1.4 (mg CE/g). Equally, APOE showed a potential radical scavenging activity compared to the butylated hydroxytoluene (BHT), with an anti-radical power (ARP) of 46 ± 1.5. During 14 days of storage at 4°C, the combination between APOE and BacFL31 limited the microbial deterioration (P < 0.05), led to a decrease in thiobarbituric acid reactive substances (TBARS) values and slowed down the metmyoglobin (MetMb) and carbonyl group accumulation and delayed the disappearance of sulfphydryl proteins (P < 0.05). The combination was also efficient (P < 0.05) against microflora proliferation, decreased primary and secondary lipid oxidation (P < 0.05), reduced protein oxidation and enhanced significantly (P < 0.05) the sensory attributes. Thus, the enterocin BacFL31 use from a safe Enterococcus faecium combined with APOE as a potential natural preservative to biocontrol ground beef was promising as it was effective at low concentration. The data lay bases for new tests to be carried out in other food matrices.

Highlights

  • Due to its composition, meat and meat products are prone for growth of several microorganisms and pathogenic bacteria as well as oxidation reactions [1, 2]

  • The present paper aimed to evaluate the potential bio preservative effect of BacFL31 alone or in combination with peel onion extract on ground beef meat during storage at 4∘C

  • Same observations have been reported by Lee et al (2014) when proving that the onion peel extracted by heated water for 3 h at 60∘C contained 120.60 mg GAE/g [50]

Read more

Summary

Introduction

Meat and meat products are prone for growth of several microorganisms and pathogenic bacteria as well as oxidation reactions [1, 2]. These latter have been considered as one of the most significant causes of quality deterioration in meat and meat products during processing and storage [3,4,5]. The main targets of this type of redox reaction in meats are lipids and proteins In this regard, lipid oxidation affects unsaturated lipids and leads to development of rancidity and degradation of sensory and nutritional value reducing their shelf-life time [6, 7]. During protein oxidation, reactive oxygen species may attack the side chain of amino acids and the peptide backbone, which leads to formation of carbonyl compounds, decrease in the sulfhydryl contents, loss of essential amino acids and water-holding capacity, reduction in protein solubility and eventually degradation of texture and color [8,9,10].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call