Abstract
The secretion of the oxalate anion by intestinal epithelia is a functionally significant component of oxalate homeostasis and hence a relevant factor in the etiology and management of calcium oxalate urolithiasis. To test the hypothesis that human cystic fibrosis transmembrane conductance regulator (hCFTR) can directly mediate the efflux of the oxalate anion, we compared cAMP-stimulated 36Cl-, 14C-oxalate, and 35SO(4)2- efflux from Xenopus oocytes expressing hCFTR with water-injected control oocytes. hCFTR-expressing oocytes exhibited a large, reversible cAMP-dependent increase in whole cell conductance measured using a two-electrode voltage clamp and a 13-fold increase in rate of cAMP-stimulated 36Cl- efflux. In contrast, the rate constants of oxalate and sulfate efflux were low and unaffected by cAMP in either control or hCFTR-expressing oocytes. We conclude that the human CFTR gene product does not directly mediate oxalate efflux in secretory epithelia and hence is not directly involved in oxalate homeostasis in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.