Abstract

Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways.

Highlights

  • Peripheral neuroblastic tumors (PNTs) comprise a spectrum of neural crest (NC) derived neoplasms that occur along the sympathetic chain, ranging in state of differentiation and malignancy

  • Among the many differentially expressed genes, we were able to discern a clear shift in markers for NC subsets: NBs expressed sympathetic markers while GNs expressed a pattern of differentiation markers most consistent with the enteric nervous system (ENS)

  • GNs typically occur at sites along the sympathetic chain, and their progenitor cells have migrated as sympathoblasts

Read more

Summary

Introduction

Peripheral neuroblastic tumors (PNTs) comprise a spectrum of neural crest (NC) derived neoplasms that occur along the sympathetic chain, ranging in state of differentiation and malignancy. Ganglioneuromas (GNs) are benign tumors at the most differentiated end of the spectrum, composed of large neuronal cells, surrounded by satellite cells resembling glia. Neuroblastomas (NBs) span the rest of the spectrum, varying in malignancy and displaying variable degrees of neural and glial differentiation [1]. The position of a PNT along the spectrum is not invariably fixed, as metastatic, poorly differentiated tumors can undergo spontaneous regression. When these tumors regress, they may necrose or transform into GNs [2]. PNTs demonstrate a dynamic inverse correlation between differentiation and malignancy, suggesting that inducing differentiation may be a potent therapeutic strategy [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.