Abstract

One hundred and forty-four Angus × Simmental steers were allotted by body weight (BW; 363 kg), breed composition, and farm origin to a 3 × 2 factorial arrangement of six treatments (4 pens per treatment) to determine the effect of Mootral (garlic + citrus extract; 0.25% of the diet dry matter [DM] vs. 0.0%) on methane (CH4) emissions, growth, and carcass characteristics of feedlot cattle. During the first 84 d, cattle were fed three different forage concentrations in the diet (15%, 41.5%, or 68% corn silage) with or without Mootral. From day 85 to slaughter, corn silage was included at 15% of the diet DM with or without Mootral. CH4 emissions were measured on day 42 to 46 and day 203 to 207. Data were analyzed using the GLIMMIX procedure of SAS. Mootral did not affect CH4 emissions on days 42 to 46 (P ≥ 0.47), but there was a forage effect, where steers fed the 68% corn silage emitted more CH4 on a g/d (P = 0.05) and a g/kg of dry matter intake (DMI; P = 0.007) basis and tended (P = 0.07) to produce more CH4 on g/kg BW basis compared to steers fed the 15% corn silage diet. On day 203 to 207, steers fed Mootral emitted less (P ≤ 0.03) CH4 on a g/d, g/kg DMI, and g/kg BW basis compared to steers not fed Mootral. There was an interaction (P = 0.03) between forage concentration and Mootral for DMI from day 0 to 84, where Mootral decreased DMI of steers fed 15% corn silage but did not affect DMI of steers fed 41.5% or 68% corn silage. There were no effects (P ≥ 0.22) of forage concentration or Mootral on BW or average daily gain at any time, or on DMI from day 84 to slaughter and overall. However, overall calculated net energy for maintenance (NEm) and net energy for gain (NEg) tended to be greater for steers fed Mootral (P ≤ 0.10). Intake from day 0 to 84 was lower and gain:feed from day 0 to 84 and overall was greater (P = 0.04) for steers fed 68% compared to steers fed 41.5% corn silage. Calculated NEm and NEg from day 0 to 84 and overall were greater for steers fed 68% corn silage compared to steers fed 41.5% corn silage (P ≤ 0.03). Mootral tended to decrease (P ≤ 0.09) fat thickness and yield grade. In conclusion, increasing forage concentration increased CH4 emissions and Mootral decreased CH4 production in 15% corn silage diets and tended to improve carcass leanness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.