Abstract

Helminth parasites have been reported to have beneficial immunomodulatory effects in patients with allergic and autoimmune conditions and detrimental consequences in patients with tuberculosis and some viral infections. Their role in coinfection with respiratory viruses is not clear. Here we investigated the effects of strictly enteric helminth infection with Heligmosomoides polygyrus on respiratory syncytial virus (RSV) infection in a mouse model. A murine helminth/RSV coinfection model was developed. Mice were infected by means of oral gavage with 200 stage 3 H polygyrus larvae. Ten days later, mice were infected intranasally with either RSV or UV-inactivated RSV. H polygyrus-infected mice showed significantly less disease and pulmonary inflammation after RSV infection associated with reduced viral load. Adaptive immune responses, including TH2 responses, were not essential because protection against RSV was maintained in Rag1-/- and Il4rα-/- mice. Importantly, H polygyrus infection upregulated expression of type I interferons and interferon-stimulated genes in both the duodenum and lung, and its protective effects were lost in both Ifnar1-/- and germ-free mice, revealing essential roles for type I interferon signaling and microbiota in H polygyrus-induced protection against RSV. These data demonstrate that a strictly enteric helminth infection can have remote protective antiviral effects in the lung through induction of a microbiota-dependent type I interferon response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.