Abstract

Five intestinal defensins, termed cryptdins 1-5, have been purified from mouse small bowel, sequenced, and localized to the epithelium by immunohistochemistry. Although identified as members of the defensin peptide family by peptide sequencing, enteric defensins are novel in that four cryptdins have amino termini which are three to six residues longer than those of leukocyte-derived defensins. A fifth cryptdin is the first defensin to diverge from the previously invariant spacing of cysteines in the peptide structure. The most abundant enteric defensin, cryptdin-1, had antimicrobial activity against an attenuated phoP mutant of Salmonella typhimurium but was not active against the virulent wild-type parent. Immunohistochemical localization demonstrated that cryptdin-1, and probably cryptdins 2 and 3, occur exclusively in Paneth cells, where the peptides appear to be associated with cytoplasmic granules. Biochemical and immunologic analysis of the luminal contents of the small intestine suggest that cryptdin peptides are secreted into the lumen, similar to Paneth cell secretion of lysozyme. The presence of several enteric defensins in the intestinal epithelium, evidence of their presence in the lumen, and the antibacterial activity of cryptdin-1 suggest that these peptides contribute to the antimicrobial barrier function of the small bowel mucosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.