Abstract
We study the quantum entanglement caused by unitary operators that have classical limits that can range from the near integrable to the completely chaotic. Entanglement in the eigenstates and time-evolving arbitrary states is studied through the von Neumann entropy of the reduced density matrices. We demonstrate that classical chaos can lead to substantially enhanced entanglement. Conversely, entanglement provides a useful characterization of quantum states in higher-dimensional chaotic or complex systems. Information about eigenfunction localization is stored in a graded manner in the Schmidt vectors, and the principal Schmidt vectors can be scarred by the projections of classical periodic orbits onto subspaces. The eigenvalues of the reduced density matrices is sensitive to the degree of wave-function localization, and is roughly exponentially arranged. We also point out the analogy with decoherence, as reduced density matrices corresponding to subsystems of fully chaotic systems, are diagonally dominant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.