Abstract

Particle identity and entanglement are two fundamental quantum properties that work as major resources for various quantum information tasks. However, it is still a challenging problem to understand the correlation of the two properties in the same system. While recent theoretical studies have shown that the spatial overlap between identical particles is necessary for nontrivial entanglement, the exact role of particle indistinguishability in the entanglement of identical particles has never been analyzed quantitatively before. Here, we theoretically and experimentally investigate the behavior of entanglement between two bosons as spatial overlap and indistinguishability simultaneously vary. The theoretical computation of entanglement for generic two bosons with pseudospins is verified experimentally in a photonic system. Our results show that the amount of entanglement is a monotonically increasing function of both quantities. We expect that our work provides an insight into deciphering the role of the entanglement in quantum networks that consist of identical particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.