Abstract

In the practical context of quantum networks, quantum teleportation plays a key role in transmitting quantum information. In the process of teleportation, a maximally entangled pair is consumed. Through this paper, an efficient scheme of re-establishing entanglement between different nodes in a quantum network is explored. A hybrid land-satellite network is considered, where the land-based links are used for short-range communication, and the satellite links are used for transmissions between distant nodes. This new scheme explores many different possibilities of resupplying the land nodes with entangled pairs, depending on: the position of the satellites, the number of pairs available and the distance between the nodes themselves. As to make the entire process as efficient as possible, we consider the situations of direct transmissions of entangled photons and also the transmissions making use of entanglement swapping. An analysis is presented for concrete scenarios, sustained by numerical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call