Abstract

We construct entanglement witnesses using fundamental quantum operators of spin models which contain two-particle interactions and posses a certain symmetry. By choosing the Hamiltonian as such an operator, our method can be used for detecting entanglement by energy measurement. We apply this method to the cubic Heisenberg lattice model in a magnetic field, the XY model and other familiar spin systems. Our method is used to obtain a temperature bound for separable states for systems in thermal equilibrium. We also study the Bose-Hubbard model and relate its energy minimum for separable states to the minimum obtained from the Gutzwiller ansatz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call