Abstract
In this paper, we investigate the robustness of the quantum correlations against the environment effects in various opto-mechanical bipartite systems. For two spatially separated opto-mechanical cavities, we give analytical formula for the global covariance matrix involving two mechanical modes and two optical modes. The logarithmic negativity as an indicator of the degree of entanglement and the Gaussian quantum discord which is a witness of quantumness of correlations are used as quantifiers to evaluate the different pairwise quantum correlations in the whole system. The evolution of the quantum correlations existing in this opto-mechanical system are analyzed in terms of the thermal bath temperature, squeezing parameter and the opto-mechanical cooperativity. We find that with desirable choice of these parameters, it is possible either to enhance or annihilate the quantum correlations in the system. Various scenarios are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.