Abstract

We study the entanglement and the Bell nonlocality of a coupled two-qubit system, in which each qubit is coupled with one individual environment. We study how the nonequilibrium environments (with different temperatures or chemical potentials) influence the entanglement and the Bell nonlocality. The nonequilibrium environments can have constructive effects on the entanglement and the Bell nonlocality. Nonequilibrium thermodynamic cost can sustain the thermal energy or particle current and enhance the entanglement and the Bell nonlocality. However, the nonequilibrium conditions (characterized by the temperature differences or the thermodynamic cost quantified by the entropy production rates) which give the maximal violation of the Bell inequalities are different from the nonequilibrium conditions which give the maximal entanglement. When the Bell inequality has asymmetric observables (between Alice and Bob), for example the $I_{3322}$ inequality, such asymmetry can also be reflected from the effects under the nonequilibrium environments. The spatial asymmetric two-qubit system coupled with nonequilibrium bosonic environments shows the thermal rectification effect, which can be witnessed by the Bell nonlocality. Different spatial asymmetric factors can be linearly cancelled with each other in the thermal rectification effect, which is also reflected on the changes of the entanglement and the Bell nonlocality. Our study demonstrates that the nonequilibrium environments are both valuable for the entanglement and Bell nonlocality resources, based on different optimal nonequilibrium conditions though.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.