Abstract

We introduce a novel class of phase transitions separating quantum states with different entanglement features. An example of such an "entanglement phase transition" is provided by the many-body localization transition in disordered quantum systems, as it separates highly entangled thermal states at weak disorder from many-body localized states with low entanglement at strong disorder. In the spirit of random matrix theory, we describe a simple model for such transitions where a physical quantum many-body system lives at the "holographic" boundary of a bulk random tensor network. Using a replica trick approach, we map the calculation of the entanglement properties of the boundary system onto the free energy cost of fluctuating domain walls in a classical statistical mechanics model. This allows us to interpret transitions between volume-law and area-law scaling of entanglement as ordering transitions in this statistical mechanics model. Our approach allows us to get an analytic handle on the field theory of these entanglement transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call