Abstract

We propose a scheme to realize entanglement swapping via superradiance, entangling two distant cavities without a direct interaction. The successful Bell-state-measurement outcomes are performed naturally by the electromagnetic reservoir, and we show how, using a quantum trajectory method, the non-local properties of the state obtained after the swapping procedure can be verified by the steering inequality. Furthermore, we discuss how the unsuccessful measurement outcomes can be used in an experiment of delayed-choice entanglement swapping. An extension of testing the quantum steering inequality with the observers at three different times is also considered

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.