Abstract

We study entanglement between the spin components of the Bardeen-Cooper-Schrieffer (BCS) ground state by calculating the full entanglement spectrum and the corresponding von Neumann entanglement entropy. The entanglement spectrum is effectively modeled by a generalized Gibbs ensemble (GGE) of non-interacting electrons, which may be approximated by a canonical ensemble at the BCS critical temperature. We further demonstrate that the entanglement entropy is jointly proportional to the pairing energy and to the number of electrons about the Fermi surface (an area law). Furthermore, the entanglement entropy is also proportional to the number fluctuations of either spin component in the BCS state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.