Abstract
We study the entanglement spectrum of a Chern insulator on a cylinder geometry, with the cut separating two partitions parallel to the cylinder edge at varying distances from the edge. In contrast to similar studies on a torus, there is only one cut and hence only one virtual edge mode in the entanglement spectrum. The entanglement spectrum has a gap when the cut is close enough to the physical edge of the cylinder such that the edge mode spatially extends over the cut. This effect is suppressed for parameter choices where the edge mode is sharply localized at the edge. In the extreme case of a perfectly localized edge mode, the entanglement spectrum is gapless, even if the smaller partition consists of a single edge row. For the single-row cut, we construct the corresponding entanglement Hamiltonian, which is a 1D, tight-binding Hamiltonian with complex long–range hopping and interesting properties. We also study and explain the effect of two different schemes of flux insertion through a ring described by such an entanglement Hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.