Abstract

The determination of relevant rheological properties and parameters in a very broad frequency range can be achieved for a number of thermoplastic polymers, for example, polystyrene, by applying the time-temperature-superposition principle. In contrast, polyethylene can only be explored rheologically in a limited frequency range, due to its fast crystallization below the crystallization temperature and its weak viscosity temperature-dependence. In this paper, various commercially available polydisperse and narrowly distributed linear and branched polyethylenes and ethylene-vinylacetate-copolymers were characterized. A piezoelectric- and a new quartz (crystal resonator) rheometer (QR) with an extended frequency range were utilized for the characterization. Introduction of high frequency rheological techniques and implementation of these new measurement methods are shown. For the first time, the entanglement relaxation time in the higher MHz frequency range was determined by applying the QR-technique and compared with those obtained by an alternative experimental method and numerical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.