Abstract
Entanglement production in coupled chaotic systems is studied with the help of kicked tops. Deriving the correct classical map, we have used the reduced Husimi function, the Husimi function of the reduced density matrix, to visualize the possible behaviors of a wave packet. We have studied a phase-space based measure of the complexity of a state and used random matrix theory (RMT) to model the strongly chaotic cases. Extensive numerical studies have been done for the entanglement production in coupled kicked tops corresponding to different underlying classical dynamics and different coupling strengths. An approximate formula, based on RMT, is derived for the entanglement production in coupled strongly chaotic systems. This formula, applicable for arbitrary coupling strengths and also valid for long time, complements and extends significantly recent perturbation theories for strongly chaotic weakly coupled systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.