Abstract

Entanglement generation and preservation is a key task in quantum information processing, and a variety of protocols exist to entangle remote qubits via measurement of their spontaneous emission. We here propose feedback methods, based on monitoring the fluorescence of two qubits and using only local pi-pulses for control, to increase the yield and/or lifetime of entangled two-qubit states. Specifically, we describe a protocol based on photodetection of spontaneous emission (i.e. using quantum jump trajectories) which allows for entanglement preservation via measurement undoing, creating a limit cycle around a Bell states. We then demonstrate that a similar modification can be made to a recent feedback scheme based on homodyne measurement (i.e. using diffusive quantum trajectories), [L. S. Martin and K. B. Whaley, arXiv:1912.00067] in order to increase the lifetime of the entanglement it creates. Our schemes are most effective for high measurement efficiencies, and the impact of less-than-ideal measurement efficiency is quantified. The method we describe here combines proven techniques in a novel way, complementing existing protocols, and offering a pathway towards generating and protecting entangled states so that they may be used in various applications on demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.